Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Chemosphere ; : 142278, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734249

ABSTRACT

Different bioactive molecules extracted from macroalgae, including oxylipins, showed interesting potentials in different applications, from healthcare to biomaterial manufacturing and environmental remediation. Thus far, no studies reported the effects of oxylipins-containing macroalgae extracts on embryo development of marine invertebrates and on neuroblastoma cancer cells. Here, the effects of an oxylipins-containing extract from Ericaria brachycarpa, a canopy-forming brown algae, were investigated on the development of Arbacia lixula sea urchin embryos and on SH-SY5Y neuroblastoma cells viability. Embryos and cells were exposed to concentrations covering a full 0-100% dose-response curve, with doses ranging from 0 to 40 µg mL-1 for embryos and from 0 to 200 µg mL-1 for cells. These natural marine toxins caused a dose-dependent decrease of normal embryos development and of neuroblastoma cells viability. Toxicity was higher for exposures starting from the gastrula embryonal stage if compared to the zygote and pluteus stages, with an EC50 significantly lower by 33 and 68%, respectively. Embryos exposed to low doses showed a general delay in development with a decrease in the ability to calcify, while higher doses caused 100% block of embryo growth. Exposure of SH-SY5Y neuroblastoma cells to 40 µg mL-1 for 72 h caused 78% mortality, while no effect was observed on their neuronal-like cells derivatives, suggesting a selective targeting of proliferating cells. Western Blot experiments on both model systems displayed the modulation of different molecular markers (HSP60, HSP90, LC3, p62, CHOP and cleaved caspase-7), showing altered stress response and enhanced autophagy and apoptosis, confirmed by increased fragmented DNA in apoptotic nuclei. Our study gives new insights into the molecular strategies that marine invertebrates use when responding to their environmental natural toxins and suggests the E. brachycarpa's extract as a potential source for the development of innovative, environmentally friendly products with larvicide and antineoplastic activity.

2.
Free Radic Biol Med ; 218: 68-81, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574975

ABSTRACT

Sarcopenia is associated with reduced quality of life and premature mortality. The sex disparities in the processes underlying sarcopenia pathogenesis, which include mitochondrial dysfunction, are ill-understood and can be decisive for the optimization of sarcopenia-related interventions. To improve the knowledge regarding the sex differences in skeletal muscle aging, the gastrocnemius muscle of young and old female and male rats was analyzed with a focus on mitochondrial remodeling through the proteome profiling of mitochondria-enriched fractions. To the best of our knowledge, this is the first study analyzing sex differences in skeletal muscle mitochondrial proteome remodeling. Data demonstrated that age induced skeletal muscle atrophy and fibrosis in both sexes. In females, however, this adverse skeletal muscle remodeling was more accentuated than in males and might be attributed to an age-related reduction of 17beta-estradiol signaling through its estrogen receptor alpha located in mitochondria. The females-specific mitochondrial remodeling encompassed increased abundance of proteins involved in fatty acid oxidation, decreased abundance of the complexes subunits, and enhanced proneness to oxidative posttranslational modifications. This conceivable accretion of damaged mitochondria in old females might be ascribed to low levels of Parkin, a key mediator of mitophagy. Despite skeletal muscle atrophy and fibrosis, males maintained their testosterone levels throughout aging, as well as their androgen receptor content, and the age-induced mitochondrial remodeling was limited to increased abundance of pyruvate dehydrogenase E1 component subunit beta and electron transfer flavoprotein subunit beta. Herein, for the first time, it was demonstrated that age affects more severely the skeletal muscle mitochondrial proteome of females, reinforcing the necessity of sex-personalized approaches towards sarcopenia management, and the inevitability of the assessment of mitochondrion-related therapeutics.


Subject(s)
Aging , Muscle, Skeletal , Sarcopenia , Animals , Male , Female , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Rats , Aging/metabolism , Sarcopenia/metabolism , Sarcopenia/pathology , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Estradiol/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Fibrosis/metabolism , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Proteome/metabolism , Sex Factors , Mitochondria/metabolism , Mitochondria/pathology , Mitophagy
3.
Life Sci ; 336: 122324, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38042281

ABSTRACT

As people age, their skeletal muscle (SkM) experiences a decline in mitochondrial functionality and density, which leads to decreased energy production and increased generation of reactive oxygen species. This cascade of events, in turn, might determine the loss of SkM mass, strength and quality. Even though the mitochondrial processes dysregulated by aging, such as oxidative phosphorylation, mitophagy, antioxidant defenses and mtDNA transcription, are the same in both sexes, mitochondria age differently in the SkM of men and women. Indeed, the onset and magnitude of the impairment of these processes seem to be influenced by sex-specific factors. Sexual hormones play a pivotal role in the regulation of SkM mass through both genomic and non-genomic mechanisms. However, the precise mechanisms by which these hormones regulate mitochondrial plasticity in SkM are not fully understood. Although the presence of estrogen receptors in mitochondria is recognized, it remains unclear whether androgen receptors affect mitochondrial function. This comprehensive review critically dissects the current knowledge on the interplay of sex in the aging of SkM, focusing on the role of sex hormones and the corresponding signaling pathways in shaping mitochondrial plasticity. Improved knowledge on the sex dimorphism of mitochondrial aging may lead to sex-tailored interventions that target mitochondrial health, which could be effective in slowing or preventing age-related muscle loss.


Subject(s)
Mitochondria , Sarcopenia , Male , Humans , Female , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Aging/metabolism , Sarcopenia/metabolism , Muscular Atrophy/metabolism , Gonadal Steroid Hormones/metabolism , Mitochondria, Muscle/metabolism
4.
Nutrients ; 15(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37571432

ABSTRACT

Autophagy is an evolutionarily conserved process critical in maintaining cellular homeostasis. Recently, the anticancer potential of autophagy inducers, including phytochemicals, was suggested. Indicaxanthin is a betalain pigment found in prickly pear fruit with antiproliferative and pro-apoptotic activities in colorectal cancer cells associated with epigenetic changes in selected methylation-silenced oncosuppressor genes. Here, we demonstrate that indicaxanthin induces the up-regulation of the autophagic markers LC3-II and Beclin1, and increases autophagolysosome production in Caco-2 cells. Methylomic studies showed that the indicaxanthin-induced pro-autophagic activity was associated with epigenetic changes. In addition to acting as a hypermethylating agent at the genomic level, indicaxanthin also induced significant differential methylation in 39 out of 47 autophagy-related genes, particularly those involved in the late stages of autophagy. Furthermore, in silico molecular modelling studies suggested a direct interaction of indicaxanthin with Bcl-2, which, in turn, influenced the function of Beclin1, a key autophagy regulator. External effectors, including food components, may modulate the epigenetic signature of cancer cells. This study demonstrates, for the first time, the pro-autophagic potential of indicaxanthin in human colorectal cancer cells associated with epigenetic changes and contributes to outlining its potential healthy effect in the pathophysiology of the gastrointestinal tract.


Subject(s)
Colorectal Neoplasms , DNA Methylation , Humans , Caco-2 Cells , Beclin-1/genetics , Epigenesis, Genetic , Autophagy/genetics , Colorectal Neoplasms/genetics
5.
Biology (Basel) ; 12(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37508381

ABSTRACT

Parathyroid-hormone-related protein (PTHrP) is encoded by the PTHLH gene which, via alternative promoter usage and splicing mechanisms, can give rise to at least three isoforms of 139, 141, and 173 amino acids with distinct C-terminals. PTHrP is subjected to different post-translational processing that generates smaller bioactive forms, comprising amino terminus, mid-region (containing a nuclear/nucleolar targeting signal), and carboxy terminus peptides. Both the full-length protein and the discrete peptides are key controllers of viability, proliferation, differentiation, and apoptosis in diverse normal and pathological biological systems via the reprogramming of gene expression and remodulation of PKA or PKC-mediated signalization mechanisms. The aim of this review is to pick up selected studies on PTHrP-associated signatures as revealed by molecular profiling assays, focusing on the available data about exemplary differentiating, differentiated, or nontumoral cell and tissue models. In particular, the data presented relate to adipose, bone, dental, cartilaginous, and skin tissues, as well as intestinal, renal, hepatic, pulmonary, and pancreatic epithelia, with a focus on hepatic fibrosis-, pancreatitis-, and diabetes-related changes as diseased states. When reported, the biochemical and/or physiological aspects associated with the specific molecular modulation of gene expression and signal transduction pathways in the target model systems under examination are also briefly described.

6.
Molecules ; 28(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37241726

ABSTRACT

P. maritimum L., belonging to the Amaryllidaceae family, is a species that grows on beaches and coastal sand dunes mainly on both sides of the Mediterranean Sea and Black Sea, the Middle East, and up to the Caucasus region. It has been largely investigated due to its several interesting biological properties. With the aim of providing new insights into the phytochemistry and pharmacology of this species, the ethanolic extract of the bulbs from a local accession, not previously studied, growing in Sicily (Italy), was investigated. This chemical analysis, performed by mono- and bi-dimensional NMR spectroscopy, as well as LC-DAD-MSn, allowed to identify several alkaloids, three of which were never detected in the genus Pancratium. Furthermore, the cytotoxicity of the preparation was assessed in differentiated human Caco-2 intestinal cells by trypan blue exclusion assay, and its antioxidant potential was evaluated using the DCFH-DA radical scavenging method. The results obtained demonstrate that P. maritimum bulbs' extract exerts no cytotoxic effect and is able to remove free radicals at all the concentrations tested.


Subject(s)
Amaryllidaceae , Antineoplastic Agents , Humans , Antioxidants/pharmacology , Sicily , Caco-2 Cells , Plant Extracts/pharmacology
7.
Biology (Basel) ; 12(4)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37106816

ABSTRACT

Aqueous extracts from Posidonia oceanica's green and brown (beached) leaves and rhizomes were prepared, submitted to phenolic compound and proteomic analysis, and examined for their potential cytotoxic effect on HepG2 liver cancer cells in culture. The chosen endpoints related to survival and death were cell viability and locomotory behavior, cell-cycle analysis, apoptosis and autophagy, mitochondrial membrane polarization, and cell redox state. Here, we show that 24 h exposure to both green-leaf- and rhizome-derived extracts decreased tumor cell number in a dose-response manner, with a mean half maximal inhibitory concentration (IC50) estimated at 83 and 11.5 µg of dry extract/mL, respectively. Exposure to the IC50 of the extracts appeared to inhibit cell motility and long-term cell replicating capacity, with a more pronounced effect exerted by the rhizome-derived preparation. The underlying death-promoting mechanisms identified involved the down-regulation of autophagy, the onset of apoptosis, the decrease in the generation of reactive oxygen species, and the dissipation of mitochondrial transmembrane potential, although, at the molecular level, the two extracts appeared to elicit partially differentiating effects, conceivably due to their diverse composition. In conclusion, P. oceanica extracts merit further investigation to develop novel promising prevention and/or treatment agents, as well as beneficial supplements for the formulation of functional foods and food-packaging material with antioxidant and anticancer properties.

8.
Int J Mol Sci ; 24(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36982723

ABSTRACT

The demand for new molecules to counter bacterial resistance to antibiotics and tumor cell resistance is increasingly pressing. The Mediterranean seagrass Posidonia oceanica is considered a promising source of new bioactive molecules. Polypeptide-enriched fractions of rhizomes and green leaves of the seagrass were tested against Gram-positive (e.g., Staphylococcus aureus, Enterococcus faecalis) and Gram-negative bacteria (e.g., Pseudomonas aeruginosa, Escherichia coli), as well as towards the yeast Candida albicans. The aforementioned extracts showed indicative MIC values, ranging from 1.61 µg/mL to 7.5 µg/mL, against the selected pathogens. Peptide fractions were further analyzed through a high-resolution mass spectrometry and database search, which identified nine novel peptides. Some discovered peptides and their derivatives were chemically synthesized and tested in vitro. The assays identified two synthetic peptides, derived from green leaves and rhizomes of P. oceanica, which revealed interesting antibiofilm activity towards S. aureus, E. coli, and P. aeruginosa (BIC50 equal to 17.7 µg/mL and 70.7 µg/mL). In addition, the natural and derivative peptides were also tested for potential cytotoxic and apoptosis-promoting effects on HepG2 cells, derived from human hepatocellular carcinomas. One natural and two synthetic peptides were proven to be effective against the "in vitro" liver cancer cell model. These novel peptides could be considered a good chemical platform for developing potential therapeutics.


Subject(s)
Alismatales , Neoplasms , Humans , Staphylococcus aureus , Escherichia coli , Peptides/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pseudomonas aeruginosa , Alismatales/chemistry , Microbial Sensitivity Tests
9.
Cancers (Basel) ; 16(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38201464

ABSTRACT

Anticancer peptides are short and structurally heterogeneous aminoacidic chains, which display selective cytotoxicity mostly against tumor cells, but not healthy cells, based on their different cell surface properties. Their anti-tumoral activity is carried out through interference with intracellular homeostasis, such as plasmalemma integrity, cell cycle control, enzymatic activities and mitochondrial functions, ultimately acting as angiogenesis-, drug resistance- and metastasis-inhibiting agents, immune stimulators, differentiation inducers and necrosis or extrinsic/intrinsic apoptosis promoters. The marine environment features an ever-growing level of biodiversity, and seas and oceans are poorly exploited mines in terms of natural products of biomedical interest. Adaptation processes to extreme and competitive environmental conditions led marine species to produce unique metabolites as a chemical strategy to allow inter-individual signalization and ensure survival against predators, infectious agents or UV radiation. These natural metabolites have found broad use in various applications in healthcare management, due to their anticancer, anti-angiogenic, anti-inflammatory and regeneration abilities. The aim of this review is to pick selected studies that report on the isolation of marine animal-derived peptides and the identification of their anticancer activity in in vitro cultures of cancer cells, and list them with respect to the taxonomical hierarchy of the source organism.

10.
Animals (Basel) ; 12(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36139342

ABSTRACT

To date, drugs released into the aquatic environment are a real problem, and among antibiotics, sulfamethoxazole is the one most widely found in wastewater; thus, the evaluation of its toxicity on marine organisms is very important. This study, for the first time, investigates the in vitro effects of 4 concentrations of sulfamethoxazole (0.05 mg/L, 0.5 mg/L, 5 mg/L, 50 mg/L) on the fertilization and development of the sea urchin Arbacia lixula. The gametes were exposed to drugs in three different stages: simultaneously with, prior to, and post-fertilization. The results show a significant reduction in the percentage of fertilized oocytes at the highest drug concentrations. Moreover, an increase in anomalies and delays in embryo development following the treatment with the drug was demonstrated. Therefore, the data suggest that this antibiotic can alter the development of marine organisms, making it urgent to act to reduce their release and to determine the concentration range with the greatest impact.

11.
Vitam Horm ; 120: 179-214, 2022.
Article in English | MEDLINE | ID: mdl-35953109

ABSTRACT

PTHrP is encoded by PTHLH gene which can generate by alternative promoter usage and splicing mechanisms at least three mature peptides of 139, 141 and 173 amino acids with distinct carboxy terminus. PTHrP may undergo proteolytic processing into smaller bioactive forms, comprising an amino terminus peptide, which is the mediator of the "classical" PTH-like effect, as well as midregion and carboxy terminus peptides that act as multifaceted critical regulator of proliferation, differentiation and apoptosis via the reprogramming of gene expression in normal and neoplastic cells. Moreover, a nuclear/nucleolar localization signal sequence is present in the [87-107] domain allowing PTHrP nuclear import and "intracrine" effect additional to the autocrine/paracrine one. Within the large number of data available in the literature on PTHrP bioactivities, the goal of this chapter is to pick up selected studies that report the detection of molecular signatures of cancer cell exposure to PTHrP, either as full-length protein or discrete peptides, demonstrated by individual gene or whole genome expression profiling, briefly recapitulating the biological implications associated with the specific gene activation or silencing.


Subject(s)
Neoplasms , Parathyroid Hormone-Related Protein , Apoptosis , Humans , Neoplasms/genetics , Parathyroid Hormone/genetics , Parathyroid Hormone-Related Protein/genetics , Peptides , Transcriptome
12.
EXCLI J ; 21: 722-743, 2022.
Article in English | MEDLINE | ID: mdl-35721581

ABSTRACT

Hepatocellular carcinoma (HCC) is an aggressive cancer histotype and one of the most common types of cancer worldwide. The identification of compounds that might intervene to restrain neoplastic cell growth appears imperative due to its elevated overall mortality. The marine environment represents a reservoir rich in bioactive compounds in terms of primary and secondary metabolites produced by aquatic animals, mainly invertebrates. In the present study, we determined whether the water-soluble cell-free extract of the coelomic fluid (CFE) of the edible sea cucumber Holothuria tubulosa could play an anti-HCC role in vitro by analyzing the viability and locomotory behavior, cell cycle distribution, apoptosis and autophagy modulation, mitochondrial function and cell redox state of HepG2 HCC cells. We showed that CFE causes an early block in the cell cycle at the G2/M phase, which is coupled to oxidative stress promotion, autophagosome depletion and mitochondrial dysfunction ultimately leading to apoptotic death. We also performed a proteomic analysis of CFE identifying a number of proteins that are seemingly responsible for anti-cancer effects. In conclusion, H. tubulosa's CFE merits further investigation to develop novel promising anti-HCC prevention and/or treatment agents and also beneficial supplements for formulation of functional foods and food packaging material.

13.
Crit Rev Food Sci Nutr ; 62(8): 2122-2139, 2022.
Article in English | MEDLINE | ID: mdl-33287559

ABSTRACT

It is known that the intake of alcoholic beverages may impair genetic and epigenetic regulatory events with consequent crucial effects on cell phenotypes and that its association with selected genotypes can lead to a different risk of cancer in the population. The aim of this review is to pick up selected studies on this topic and recapitulate some of the biochemical and nutrigenetic/nutrigenomic aspects involved in the impact of dietary low-dose alcohol consumption on the switching-on or -off of tumorigenic pathways. These include i) the existence of predisposing or protective human genotypes and the relationship between dietary compounds and alcohol in the promotion or inhibition of carcinogenesis; ii) the effects of other components of alcoholic drinks in the modulation of the expression of oncogenes and oncosuppressors, the autophagic flux and the onset of apoptosis, with examples of their cytospecificity; and iii) the role of alcoholic beverage consumption within particular dietary regimens, including the Mediterranean diet. Taking all the data into account, several alcohol-associated bioactive dietary compounds appear capable to modulate peculiar intracellular pathways predisposing to or protecting from cancer. Advances in the nutrigenetic, nutrigenomic and nutriepigenetic knowledge complementing the biochemical and molecular approaches will help in unveiling their impact on health outcome.


Subject(s)
Diet, Mediterranean , Neoplasms , Alcohol Drinking/adverse effects , Alcoholic Beverages , Humans , Neoplasms/genetics , Neoplasms/prevention & control , Nutrigenomics
14.
Biology (Basel) ; 10(10)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34681162

ABSTRACT

To date, drug pollution in aquatic systems is an urgent issue, and Danio rerio is a model organism to study the toxicological effects of environmental pollutants. The scientific literature has analyzed the effect of human drug pollution on the biochemical responses in the tissues of D. rerio adults. However, the information is still scarce and conflicting, making it difficult to understand its real impact. The scientific studies are not consistent with each other and, until now, no one has grouped their results to create a baseline of knowledge of the possible impacts. In this review, the analysis of literature data highlights that the effects of drugs on adult zebrafishes depend on various factors, such as the tissue analyzed, the drug concentration and the sex of the individuals. Furthermore, the most influenced biochemical responses concern enzymes (e.g., antioxidants and hydrolase enzymes) and total protein and hormonal levels. Pinpointing the situation to date would improve the understanding of the chronic effects of human drug pollution, helping both to reduce it in the aquatic systems and then to draw up regulations to control this type of pollution.

15.
Cancers (Basel) ; 13(11)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198869

ABSTRACT

The exposure of cancer cells to cadmium and its compounds is often associated with the development of more malignant phenotypes, thereby contributing to the acceleration of tumor progression. It is known that cadmium is a transcriptional regulator that induces molecular reprogramming, and therefore the study of differentially expressed genes has enabled the identification and classification of molecular signatures inherent in human neoplastic cells upon cadmium exposure as useful biomarkers that are potentially transferable to clinical research. This review recapitulates selected studies that report the detection of cadmium-associated signatures in breast, gastric, colon, liver, lung, and nasopharyngeal tumor cell models, as specifically demonstrated by individual gene or whole genome expression profiling. Where available, the molecular, biochemical, and/or physiological aspects associated with the targeted gene activation or silencing in the discussed cell models are also outlined.

16.
Int J Mol Sci ; 22(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810274

ABSTRACT

The carbazole compounds PK9320 (1-(9-ethyl-7-(furan-2-yl)-9H-carbazol-3-yl)-N-methylmethanamine) and PK9323 (1-(9-ethyl-7-(thiazol-4-yl)-9H-carbazol-3-yl)-N-methylmethanamine), second-generation analogues of PK083 (1-(9-ethyl-9H-carbazol-3-yl)-N-methylmethanamine), restore p53 signaling in Y220C p53-mutated cancer cells by binding to a mutation-induced surface crevice and acting as molecular chaperones. In the present paper, these three molecules have been tested for mutant p53-independent genotoxic and epigenomic effects on wild-type p53 MCF-7 breast adenocarcinoma cells, employing a combination of Western blot for phospho-γH2AX histone, Comet assay and methylation-sensitive arbitrarily primed PCR to analyze their intrinsic DNA damage-inducing and DNA methylation-changing abilities. We demonstrate that small modifications in the substitution patterns of carbazoles can have profound effects on their intrinsic genotoxic and epigenetic properties, with PK9320 and PK9323 being eligible candidates as "anticancer compounds" and "anticancer epi-compounds" and PK083 a "damage-corrective" compound on human breast adenocarcinoma cells. Such different properties may be exploited for their use as anticancer agents and chemical probes.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Carbazoles/pharmacology , Mutagens/pharmacology , Antineoplastic Agents/chemistry , Breast Neoplasms/genetics , Carbazoles/chemistry , DNA Damage , DNA Methylation , Epigenesis, Genetic/drug effects , Female , Histones/metabolism , Humans , MCF-7 Cells , Mutagens/chemistry , Signal Transduction , Tumor Suppressor Protein p53/metabolism
17.
Curr Pharm Des ; 27(20): 2328-2336, 2021.
Article in English | MEDLINE | ID: mdl-33076802

ABSTRACT

The multifaceted nature of ovarian cancer has severely hampered the development of effective therapeutics over the years. The complicate nature of ovarian cancer makes it therapeutically challenging, therefore, there has been a renewed interest in phytochemistry. Phytochemicals have emerged as a potential therapeutic option due to less side effects. Moreover, the signaling inhibition properties have also been studied extensively in recent times. A growing number of data obtained via high-throughput technologies has started to delineate the complex oncogenic signaling networks, thus broadening the therapeutic opportunities. Within the network, microRNAs (miRNAs) have been shown to play a versatile role in the regulation of cancer. Quercetin has been in the spotlight over the years because of its high pharmacological values and substantial evidence has demonstrated its anti-proliferative effect against various types of cancers. Despite the versatility of quercetin, little is known about its anti-proliferative potential towards ovarian cancer. This review sheds some light on quercetin as an alternative therapeutic approach to cancer. Furthermore, we also addresss the interplay between miRNAs and quercetin in the regulation of apoptosis in ovarian cancer.


Subject(s)
MicroRNAs , Ovarian Neoplasms , Apoptosis , Carcinoma, Ovarian Epithelial , Female , Humans , MicroRNAs/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Quercetin/pharmacology
18.
Biology (Basel) ; 9(12)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260710

ABSTRACT

Histone deacetylases (HDACs) are key components of the epigenetic machinery controlling gene expression. They are involved in chromatin remodeling events via post-translational histone modifications but may also act on nonhistone proteins, influencing many fundamental cellular processes. Due to the key involvement of HDACs in serious human pathologies, including cancer, HDAC inhibitors (HDACis) have received increased attention in recent years. It is known that marine invertebrates produce significant amounts of secondary metabolites showing active pharmacological properties and an extensive spectrum of biomedical applications. The aim of this review is to gather selected studies that report the extraction and identification of marine invertebrate-derived compounds that possess HDACi properties, grouping the producing species according to their taxonomic hierarchy. The molecular, biochemical, and/or physiological aspects, where available, and modes of action of these naturally occurring HDACis will be recapitulated, taking into consideration their possible utilization for the future design of analogs with increased bioavailability and efficacy, less toxicity, and, also, higher isoform selectivity.

19.
Cancers (Basel) ; 12(9)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947894

ABSTRACT

Hormones, i [...].

20.
Cancers (Basel) ; 12(9)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899221

ABSTRACT

Recent years have seen the idea of a close association between nutrition and the modulation of cancer development/progression reinforced [...].

SELECTION OF CITATIONS
SEARCH DETAIL
...